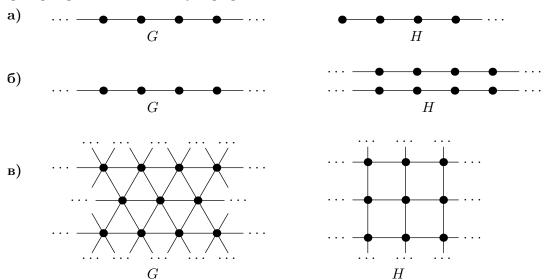
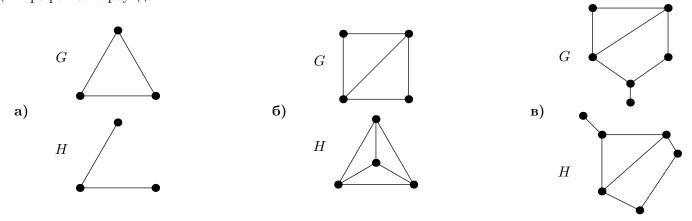
Игры Эренфойхта

Игра Эренфойхта на графах. Пусть даны два неориентированных графа G и H без кратных рёбер. Играют двое: Новатор и Консерватор. Сначала Новатор выбирает число раундов k. Каждый раунд начинает Новатор. В начале i-го раунда он выбирает один из графов и отмечает в нём вершину числом i (вершины могут повторяться). В ответ на это Консерватор должен выбрать вершину в другом графе и также отметить её числом i. Игра длится k раундов. В конце игры в графе G отмечены вершины a_1, a_2, \ldots, a_k , в графе $H - b_1, \ldots, b_k$ (возможно, с совпадениями). Консерватор выигрывает, если выполнены следующие два условия:

- 1. вершины a_i и a_j совпадают тогда и только тогда, когда вершины b_i и b_j совпадают;
- 2. вершины a_i и a_j соединены ребром тогда и только тогда, когда вершины b_i и b_j соединены ребром. Иначе говоря, победа Консерватора означает, что соответствие $a_i \leftrightarrow b_i$ задаёт *частичный изоморфизм*, т.е. изоморфизм подграфов, индуцированных на множествах вершин $\{a_1, \ldots, a_k\}$ и $\{b_1, \ldots, b_k\}$.
 - 1. а) Докажите, что если G и H изоморфны, то у Консерватора есть выигрышная стратегия.
 - **б)** Докажите, что если графы G и H конечны, то верно и обратное.
- **2.** На рисунке изображены два бесконечных графа. У какого из игроков есть выигрышная стратегия в игре Эренфойхта на этих двух графах?



3. Для какого наименьшего k Новатор может гарантированно выиграть игру Эренфойхта на следующих графах за k раундов?



Вместо неориентированных графов для игр Эренфойхта можно рассматривать и ориентированные (все определения сохраняются). С точки зрения логики, ориентированный граф — это интерпретация сигнатуры с отношением равенства и ещё одним двуместным отношением R: R(u,v) верно тогда и только тогда, когда из u в v ведёт дуга.

- 4. Определите, кто выигрывает в следующих играх Эренфойхта:
 - a) на структурах $(\mathbb{N}, <)$ и $(\mathbb{Z}, <)$?
 - б) на структурах ($\mathbb{Z},<$) и ($\mathbb{Q},<$)?
 - в) на структурах $(\mathbb{N},<)$ и $(\mathbb{N}+\mathbb{N},<)$?
 - д) на структурах (\mathbb{Z} , <) и ($\mathbb{Z} + \mathbb{Z}$, <)?
 - e) на структурах (\mathbb{Q} , <) и (\mathbb{R} , <)?
- **5.** Пусть дана формула φ сигнатуры Ω без свободных переменных. Докажите, что существует такое число k (зависящее только от φ), что если в одной интерпретации сигнатуры φ истинна, а в другой ложна, то Новатор может гарантированно выиграть игру Эренфойхта на этих двух интерпретациях за k раундов. Как вычислить k, зная φ ?
- **6.** Две интерпретации называются элементарно эквивалентными, если в них истинны одни и те же формулы (без свободных переменных). Докажите, что интерпретации A и B элементарно эквивалентны тогда и только тогда, когда в соответствующей игре Эренфойхта выигрывает Консерватор.
- 7. а) Докажите, что интерпретации $(\mathbb{N}, \leq, y = x + 1)$ и $(\mathbb{N} + \mathbb{Z}, \leq, y = x + 1)$ элементарно эквивалентны. 6) Выведите из этого, что для всякой формулы первого порядка $\phi(x)$ с одной свободной переменной в сигнатуре $(\leq, y = x + 1)$ и интерпретации \mathbb{N} множество тех n, на которых формула истинна, конечно или является дополнением конечного.
 - 8. а) Докажите, что интерпретации ($\mathbb{Z}, \leq, y = x + 1$) и ($\mathbb{Z} + \mathbb{Z}, \leq, y = x + 1$) элементарно эквивалентны.
 - **б**) Выведите из этого, что отношение \leq в \mathbb{Z} не выражается через отношение y = x + 1.
 - в) Выражается ли отношение y = x + 1 через \leq ?
 - г) Выражается ли отношение \leq через y = x + 1 в \mathbb{N} ?