Коммуникационная сложность

Рассмотрим следующую модель: Алиса и Боб хотят вычислить функцию $f\colon X\times Y\to Z$, где X,Y,Z – конечные множества. Сложность состоит в том, что Алиса знает только $x\in X$, а Боб только $y\in Y$, так что, вообще говоря, чтобы вычислить функцию им необходимо обмениваться информацией. Такой обмен должен происходить по некоторому набору правил, называемому *протоколом*. В ходе выполнения протокола Алиса и Боб по очереди посылают друг другу сообщения – строки из нулей и единиц. Протокол заранее фиксирует, кто посылает первое сообщение, а также фиксирует последовательность (k_1,k_2,\ldots,k_s) , где $k_i\in\mathbb{N}$. Сообщение с номером i должно иметь длину k_i . Кроме того, протокол должен определять, какие именно сообщения посылают Алиса и Боб в зависимости от их входных данных и сообщений, уже переданных к этому моменту. В конце и Алиса, и Боб должны знать значение функции. Мы считаем что Алиса и Боб обладают неограниченными вычислительными возможностями и изучаем только количество битов, которыми они должны обменяться для вычисления той или иной функции. Сложностью протокола называется общее количество переданных битов $\sum_i k_i$. Коммуникационной сложностью функции f называется минимальная сложность протокола, вычисляющего f. Коммуникационная сложность функции f обозначается через $\mathrm{cc}(f)$.

- 1. Для всякой функции $f: X \times Y \to Z$ докажите, что $\operatorname{cc}(f) \leqslant \lceil \log |X| \rceil + \lceil \log |Z| \rceil$.
- **2.** Пусть Алиса и Боб получают подмножества $x,y \subseteq \{1,...,n\}$ и хотят вычислить функцию $\mathrm{MAX}(x,y) = \mathrm{max}(x \cup y)$. Доказать, что **a)** $\mathrm{cc}(MAX) \leqslant 2 \lceil \log n \rceil$; **б)** $\mathrm{cc}(MAX) \leqslant \frac{3}{2} \lceil \log n \rceil$; **в)** $\mathrm{cc}(MAX) \leqslant \lceil \log n \rceil + O(\sqrt{\log n})$.
- **3.** Пусть Алиса и Боб получают подмножества $x, y \subseteq \{1, ..., n\}$. Функцию AVG(x, y) равна среднему арифметическому чисел в мультимножестве (то есть в множестве, в которое каждый элемент может входить несколько раз) $x \cup y$. Доказать, что $cc(AVG) = O(\log n)$.
- **4.** Пусть Алиса и Боб получают подмножества $x,y \subseteq \{1,\ldots,n\}$. Функция MED(x,y) определяется как медиана (средний элемент) в мультимножестве $x \cup y$. Доказать, что **a)** $\text{cc}(\text{MED}) = O(\log^2 n)$; **6)** $\text{cc}(\text{MED}) = O(\log n)$.
- **5.** Пусть $x,y \in \{0,1\}^n$. Функция $\mathrm{EQ}(x,y)$ равна 1 тогда и только тогда, когда x=y. Докажите, что $\mathrm{cc}(EQ)=n+1$.
- **6.** Пусть $x,y \in \{0,1\}^n$. Функция $\mathrm{GT}(x,y)$ равна 1 тогда и только тогда, когда $x \geqslant y$, как числа в двоичной записи. Найдите, чему равна $\mathrm{cc}(GT)$.
- 7. Пусть $x, y \subseteq \{1, \dots, n\}$. Функция DISJ(x, y) равна 1 тогда и только тогда, когда $x \cap y = \emptyset$. Найдите, чему равна cc(DISJ).
- 8. Пусть функция $f: X \times Y \to Z$ сюръективна. Докажите, что $cc(f) \geqslant \log |Z|$.

Пусть $f: X \times Y \to \{0,1\}$. Множество $S \subseteq X \times Y$ называется $mpy \partial$ ным множеством, если существует $z \in \{0,1\}$, такое что

- Для всех $(x,y) \in S$ верно f(x,y) = z.
- Для всяких различных $(x_1, y_1) \in S$ и $(x_2, y_2) \in S$ верно $f(x_1, y_2) \neq z$ или $f(x_2, y_1) \neq z$.
- **9. а)** Докажите, что если у f есть трудное множество размера t, то $cc(f) \geqslant \log_2 t$. **6)** Решите три предыдущие задачи с помощью трудных множеств.

Пороговый элемент задается набором целых чисел w_1, \ldots, w_n, θ . На входных булевых переменных x_1, \ldots, x_n он вычисляет результат сравнения $\sum_{i=1}^n w_i x_i > \theta$, то есть выдает 1, если неравенство верно, и 0 иначе. Весом порогового элемента называется $\sum |w_i|$.

- 10. Докажите, что функцию GT можно вычислить пороговым элементом.
- **11.** Пусть функция GT вычисляется булевой схемой размера S из пороговых элементов. Пусть W максимальный вес порогового элемента в этой схеме. Докажите, что $S \cdot \log W = \Omega(n)$.

Пусть протокол разрешает каждому из Алисы и Боба в процессе обмена сообщениями подбрасывать монету и действовать по-разному при разных исходах бросания. Назовем такой протокол вероятностным. Будем говорить, что такой коммуникационный протокол вычисляет функцию $f: X \times Y \to Z$ с вероятностью ошибки менее 1/3, если для любых $x \in X$ и $y \in Y$ в результате выполнения протокола Алиса и Боб узнают значение f(x,y) с вероятностью не менее 2/3 (вероятность берётся по случайным бросаниям монет Алисы и Боба).

- **12.** Докажите, что функция EQ(x,y) имеет вероятностную коммуникационную сложность $O(\log n)$.
- 13. Пусть $x, y \in \{0,1\}^n$ и пусть заранее известно, что хемминговское расстояние между x и y (число позиций, в которых x и y различаются) не превосходит 0.1n. Алиса хочет сообщить своё слово Бобу (иначе говоря, Бобу нужно вычислить значение функции f(x,y) = x). Докажите, что вероятностная коммуникационная сложность этой задачи не меньше 0.01n.