Энтропия Шеннона, часть вторая

Пусть задано совместное распределение вероятностей пары случайных величин (α, β) . Пусть α принимает значения в конечном множестве $\{a_1, \ldots, a_n\}$, а β в конечном множестве $\{b_1, \ldots, b_m\}$ (распределение вероятностей есть набор чисел

$$p_{ij} = \text{Prob}[\alpha = a_i, \ \beta = b_j]$$

для i = 1 ... n, j = 1 ... m).

 $3a\partial a$ ча 1. Докажите, что $H(\alpha,\beta) \leq H(\alpha) + H(\beta)$, причём равенство выполняется в том и только том случае, когда α и β независимы.

Для каждого фиксированного значения a_i можно рассмотреть условное распределение случайной величины β при заданном значении α :

$$p_{j|i} = \text{Prob}[\beta = \beta_j \mid \alpha = a_i],$$

будем обозначать энтропию этого распределения $H(\beta \mid \alpha = a_i)$. Усреднение этих энтропий называется условной энтропией β относительно α :

$$H(\beta \mid \alpha) := \sum_{i} H(\beta \mid \alpha = a_i) \cdot \text{Prob}[\alpha = a_i]$$

 $3a\partial a$ ча 2. Докажите, что $H(\alpha,\beta)=H(\alpha)+H(\beta\mid\alpha)$.

 $\mathit{Информацией}$ в случайной величине α о случайной величине β называется разница между условной и безусловной энтропиями β :

$$I(\alpha; \beta) := H(\beta) - H(\beta \mid \alpha).$$

 $3a\partial a ua$ 3. Докажите, что информация симметрична, т.е., $I(\alpha;\beta) = I(\beta;\alpha)$.

В силу симметричности величину $I(\alpha; \beta)$ обычно называют взаимной информацией двух случайных величин.

 $3a\partial a$ ча 4. Придумайте определение взаимной информации α и β при известном значении γ (предполагается, что α, β, γ имеют совместное распределение вероятностей).

 $\it 3adaчa$ 5. Докажите, что для любого распределения тройки α,β,γ

$$H(\alpha, \beta, \gamma) + H(\gamma) \le H(\alpha, \gamma) + H(\beta, \gamma).$$

 $\mathit{3adaчa}$ 6. Докажите, что для любого распределения тройки α,β,γ

$$2H(\alpha, \beta, \gamma) \le H(\alpha, \beta) + H(\beta, \gamma) + H(\gamma, \alpha).$$

Рассмотрим на множестве $\{0,1\}^n$ два распределения вероятностей. Распределение вероятностей μ соответствует подбрасыванию n симметричных монет: вероятность каждого $x \in \{0,1\}^n$ равна $1/2^n$. Распределение вероятностей ν соответствует подбрасыванию "кривой монеты", которая выпадает орлом с вероятностью p > 1/2 и решкой с вероятностью q = 1 - p. Для каждого $x \in \{0,1\}^n$, в котором m единиц и l = n - m нулей

$$\operatorname{Prob}_{\nu}[x] = p^m \cdot q^l.$$

 $3a\partial a$ ча 7. (а) Назовем $A\subset\{0,1\}^n$ множество всех таких x, в которых нулей больше pn. Докажите, что

$$\frac{\operatorname{Prob}_{\nu}[A]}{\operatorname{Prob}_{\mu}[A]} \ge (2p^p q^q)^n.$$

(б) Пусть S состоит из всех $x \in \{0,1\}^n$, в которых единиц больше $(\frac{1}{2} + \delta)n$. Докажите, что

$$\operatorname{Prob}_{\mu}[S] \le 2^{(h(\frac{1}{2}+\delta)-1)n},$$

где $h(p) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$.

(в)* Обозначим x результат n подбрасываний монеты, которая выпадает орлом с вероятностью p и решкой с вероятностью q=1-p. Докажите, что для достаточно малых δ

 $\operatorname{Prob}_{\nu}[$ число единиц в случайном x отличается от pn больше, чем на $\delta n] \leq 2 \cdot 2^{-cn}$

для некоторого $c=c(p,\delta)>0$. Указание: Рассмотрите "смещённые" распределения ν_1 и ν_2 , в которых орёл выпадает с вероятностями $p+\delta$ или $p-\delta$ соответственно. Оцените разницу меры ν (с вероятностью выпадения орла p) и смещённых мер ν_1 и ν_2 для тех x, в которых слишком много или слишком мало единиц. Константа c окажется дивергенцией Кульбака—Лейблера для некоторой пары распределений.