Исчисление Ламбека

Множество всех непустых конечных слов в алфавите Σ обозначается Σ^+ . Пустое слово обозначается Λ . $\Sigma^* = \Sigma^+ \cup \{\Lambda\}$. Язык над алфавитом Σ — это произвольное подмножество множества Σ^* . Для любых $A, B \subseteq \Sigma^+$ обозначим $A \cdot B = \{uv \colon u \in A, \ v \in B\}, \ A \ B = \{w \in \Sigma^+ \colon \{w\} \cdot B \subseteq A\}, \ A \ B = \{w \in \Sigma^+ \colon A \cdot \{w\} \subseteq B\}.$

- **1.** Пусть $\Sigma = \{a, b, c\}$. Опишите следующие множества: **a)** $\{ac, ca\} \cdot \{a, b, cb\}$; **б)** $\{a^nb^n : n > 0\} \cdot \varnothing$;
- **B)** $\{abcc, ccaccbc, cc, ccc\} / \{cc\}; \mathbf{r}\}$ $\{abba, baa, bac\} / \{a, c\}; \mathbf{\pi}\}$ $\{aa, aaa\} \setminus \{ab, aab, aaab, aaab, aaaa\};$
- **e)** $\{a^nb^n \colon n > 0\} \cdot \{b^k \colon k > 0\}; \ \mathbf{m}) \ \{a^nb^m \colon 0 < n < m\} \ / \ \{b^k \colon k > 0\}; \ \mathbf{3}) \ \varnothing \setminus \{aa,bb\}; \ \mathbf{u}) \ \varnothing \setminus \varnothing;$
- **K)** $\Sigma^+ / \{a^n b^n : n > 0\}.$
- **2.** Верно ли, что для всех $K, L, M \subseteq \Sigma^+$ справедливо **a)** $(K \cdot L) \cdot M = K \cdot (L \cdot M)$? **6)** $L \cdot M = M \cdot L$?
- **3.** Существуют ли такие конечные множества $L, M \subseteq \{a, b, c\}^+$, что **a)** $|L \cdot M| > |L| \cdot |M|$?
- **6)** $|L \cdot M| < |L| \cdot |M|$? **B)** |L / M| > |L|?
- **4.** Пусть $\Sigma = \{a,b\}$ и $L = \{a^mba^n : 0 \le m < n\}$. Верно ли, что **a)** $L \setminus (L \cdot L) = L$? **6)** $(L \cdot L) / L = L$?
- **5.** Верно ли, что для всех $L,M\subseteq \Sigma^+$ справедливо **a)** $(L/M)\cdot M\subseteq L$? **6)** $L\subseteq (L/M)\cdot M$?
- B) $L \subseteq (L \cdot M) / M$? r) $M \subseteq (L / M) \setminus L$? A) $(L / M) \setminus L \subseteq M$? e) $L / (M / M) \subseteq L$?
- **6.** Верно ли, что для всех $K, L, M \subseteq \Sigma^+$ справедливо **a)** $(L \ / \ L) \cdot L = L$? **6)** $(L \ / \ L) \setminus L = L$?
- **B)** $(K \setminus L) / M = K \setminus (L / M)$? **r)** $K / (L \cdot M) = (K / L) / M$? **д)** $K / (L \cdot M) = (K / M) / L$?
- **e)** $((L \cdot M) / M) \cdot M = L \cdot M$? **ж)** $L / ((L / M) \setminus L) = L / M$? **3)** $(L / L) \setminus (L / L) = L / L$?
- **7*.** Рассмотрим уравнения, подобные приведённым в задаче 6 (слева и справа от знака равенства правильно построенные выражения, составленные из переменных K, L, M и т. д. с помощью знаков \cdot , \cdot , \cdot и скобок). a) Существует ли (быстрый) алгоритм, устанавливающий, является ли данное уравнение тождеством? **6)** Существует ли уравнение, верное для всех автоматных языков, но не являющееся тождеством? **8)** Существует ли уравнение, верное для всех конечных и коконечных языков, но не являющееся тождеством? (Язык называется коконечным, если его дополнение до Σ^+ конечно.)
- 8. Ответить на вопросы из задачи 7 для уравнений, не содержащих ни /, ни \.
- **9.** Найти все тождества, составленные из \cdot , /, \, =, длины 6 (т. е. с 6 вхождениями переменных).
- **10.** Существуют ли такие конечные множества $L, M \subseteq \{a\}^+$, что **a)** $L \cdot M \neq M \cdot L$? **6)** $L / M \neq M \setminus L$? **B)** $|L \cdot M| < |L| + |M| 1$?
- **11.** Доказать, что **a)** $K \cdot L \subseteq M \iff K \subseteq M / L;$ **6)** $K \cdot L \subseteq M \iff L \subseteq K \setminus M;$ **B)** $K \subset L \& L \subset M \implies K \subset M.$
- **12. Теорема 1.** Все универсальные законы, составленные из \cdot , /, \setminus , \subseteq , можно вывести из аксиом $L \subseteq L$, $(K \cdot L) \cdot M \subseteq K \cdot (L \cdot M)$, $K \cdot (L \cdot M) \subseteq (K \cdot L) \cdot M$ с помощью подстановки и правил, приведённых в задаче 11, без привлечения определений операций \cdot , /, \setminus . (Эта система аксиом и правил называется исчислением Ламбека.) **а)** Найти такие выводы для универсальных законов из задачи 5. **6)** Найти такие выводы для универсальных законов из задачи 6 (вместо каждого равенства надо вывести два утверждения о включении). **в)** Существует ли закон, универсальный для $\Sigma = \{a, b\}$, но не для $\Sigma = \{a, b, c, d\}$?
- **13. а)** Найти систему аксиом и правил для универсальных законов, составленных из \cdot , \subseteq ; **б)** Найти систему аксиом и правил для универсальных законов, составленных из \cdot , /, \subseteq .
- **14. Теорема 2.** Все универсальные законы, составленные из /, \subseteq , можно вывести из аксиом $L \subseteq L$, $L \ / \ M \subseteq (L \ / \ K) \ / \ (M \ / \ K)$ с помощью подстановки и правил $K \subseteq L \ \& \ L \subseteq M \implies K \subseteq M$ и $L_1 \subseteq L_2 \ \& \ M_1 \subseteq M_2 \implies L_1 \ / \ M_2 \subseteq L_2 \ / \ M_1$. Найти такие выводы для следующих законов: **a)** $L \ / \ ((M \ / \ K) \ / \ (L \ / \ K)) \subseteq L \ / \ (M \ / \ L)$; **6)** $(L \ / \ M) \ / \ L \subseteq (((L \ / \ M) \ / \ M) \ / \ L) \ / \ ((L \ / \ M) \ / \ L)$.